3/17/2023

National Risk Index

Discover the landscape of natural hazard risk Casey Zuzak, Senior Risk Analyst Risk Management Directorate

Natural Hazards Risk Assessment Program

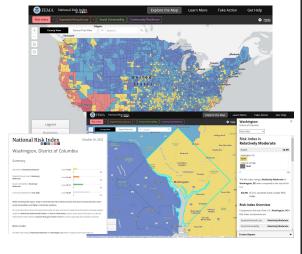
Natural Hazards Risk Assessment Program

😻 FEMA

Federal Emergency Management Agency

45

Natural Hazards Risk Assessment Program Goals


3/17/2023

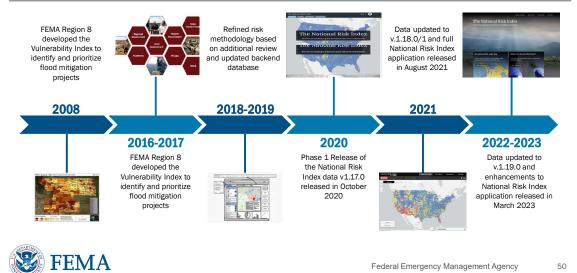
FEMA National Risk Index

Discover the landscape of natural hazard risk

National Risk Index

- Began as a strategy for reducing cost and eliminating inconsistent risk assessments in planning
- Identifies areas that offer high return on mitigation investment
- Reduces the cost of risk assessment allowing community planners to prioritize action
- Provides pre-calculated, top- down national baseline risk assessment

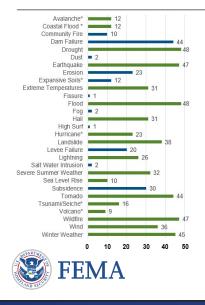
Federal Emergency Management Agency


National Risk Index

- A free, consistent, and comprehensive nation-wide risk assessment that is multihazard and inclusive of social vulnerability and community resilience did not exist.
- Successful FEMA, state and local program implementation can be enhanced with credible risk assessment information.
- Provides a mechanism by which social equity and future conditions can be explored
- Allows for easy and effective dialogue around all hazards risk for a community.

National Risk Index Timeline

National Risk Index Contributors



National Risk Index Contributors (Region 10)

National Risk Index Hazard Selection

- Reviewed the 50 State Hazard Mitigation Plans
 - Initial list developed from rate of occurrence in each state plan
- Natural hazards only
 - Man-made hazards or hazards related to anthropogenic activities not included

Hazard Included in Analysis Hazard Excluded from Analysis ★ Significant Regional Hazard for Consideration

- NOTES: • Coastal Flood and Sea Level Risk Hazards were combined
- combined • Extreme Temperature is both Hot and Cold • Severe Summer Weather is covered by Wind, Hail,
- Tornado, and Lightning
 Winter Weather is both Snow and Ice

54

Federal Emergency Management Agency

FATH

National Risk Index - Hazards Coastal Drought Avalanche Cold Wave Earthquake Hail Flooding Riverine Lightning Heat Wave Hurricane Ice Storm Landslide Flooding Volcanio Winter Wildfire Strong Wind Tornado sunami Activity Weather **FEMA** Federal Emergency Management Agency 55

Social Vulnerability and Community Resilience

Social Vulnerability Index: SoVI 2010-2014

- Developed by the University of South Carolina's HVRI
- Grouped into 7 components with 29 variables (SoVI 2010):
 - Race and class (7 variables), Wealth (5 variables), Elderly residents (6 variables), Hispanic ethnicity (5 variables), Special needs individuals (2 variables), Native American ethnicity (1 variables), and Service industry employment (2 variables)
- Comparative index at the county or subcounty level
- Positive and negative component loading

FEMA

Baseline Resilience Indicators for Communities: BRIC 2010-2014

- Developed by the University of South Carolina's HVRI
- 6 resilience category scores, plus total score
 - Social, Economic, Community capital, Institutional, Infrastructural, Environmental
- Comparative indicators at the county level
- Indicators analyze the relationship between resilience, vulnerability, and the relative impact of disasters on rural and urban places

Federal Emergency Management Agency

Determining Risk

National Risk Index = Expected Annual Loss X Social Vulnerability ÷ Community Resilience Expected Annual Loss = Natural Hazard Exposure x Natural Hazard Frequency x Historical Loss Risk is defined as the potential for negative impacts as a result of a natural hazard Considers the probabilities or frequencies of 18 natural hazards, and the . population and property value exposed within hazard extents • Expected Annual Loss is calculated separately for each natural hazard, then summed to generate a composite score for all 18 natural hazards • Equation supports traditional hazards risk approach of risk being defined as the product of Hazard Frequency, Vulnerability, and Exposure Spatial Hazard Events and Losses Database for the United States Arizona State University **FEMA** 57

Calculating Risk

Risk = Expected Annual Loss x Social Vulnerability ÷ Community Resilience

National Risk Index Scores County **Census Tract** Expected Annual Loss Very High Relatively High EAL Rating Relatively Moderate Relatively Low Very Low No Expected Annual Losses Not Applicable Insufficient Data Risk Index Very High Relatively High **Risk Rating** Relatively Moderate Relatively Low Very Low No Rating Not Applicable Insufficient Data 🎒 FEMA 59

Updated Top 20 Highest Risk Counties in Region 10

	#	County	EAL	SV	CR	Risk
	1	Grays Harbor, WA	38			39
	2	Clatsop, OR	33			34
	3	Multnomah, OR	40			30
	4	King, WA	62			29
	5	Marion, OR	28			27
	6	Pacific, WA	21			25
	7	Coos, OR	23			25
	8	Pierce, WA	40			25
	9	Lane, OR	29			25
	10	Yakima, WA	23			25
	11	Curry, OR	19			24
	12	Lincoln, OR	20			23
	13	Jackson, OR	22			22
	14	Skagit, WA	27			22
	15	Cowlitz, WA	25			22
	16	Douglas, OR	22			21
	17	Wahkiakum, WA	19			21
	18	Tillamook, OR	22			21
	19	Clallam, WA	19			20
	20	Washington, OR	36			20
) F	EN	ЛA				

	AVALANCHE			COASTAL FLOOD	DING		COLD WAVE		DROUGHT					
#	County	Score	#	County	Score	#	County	Score	#	County	Score			
1	Lewis, WA	75	1	Grays Harbor, WA	84	1	Yakima, WA	100	1	Gooding, ID	32			
2	Valdez-Cordova, AK	67	2	Clatsop, OR	75	2	Grant, WA	76	2	Twin Falls, ID	30			
3	Kenai Peninsula, AK	60	3	Pacific, WA	52	3	Okanogan, WA	64	3	Jerome, ID	29			
4	Pierce, WA	56	4	Wahkiakum, WA	50	4	Bingham, ID	61	4	Yakima, WA	27			
5	Clark, ID	52	5	Skagit, WA	44	5	Adams, WA	60	5	Cassia, ID	27			
	EARTHQUAKE			HAIL			HEAT WAVE			ICE STORM				
#	County	Score	#	County	Score	#	County	Score	#	County	Score			
1	Multnomah, OR	31	1	Yakima, WA	20	1	Josephine, OR	14	1	Umatilla, OR	31			
2	Marion, OR	28	2	Adams, WA	15	2	Douglas, OR	14	2	Lane, OR	29			
	Lane, OR	26	3	Okanogan, WA	12	3	Marion, OR	12	3	Multnomah, OR	26			
3					11	4	Coos, OR	12	4	Wasco, OR	24			
3 4	King, WA	25	4	Deschutes, OR	11	4	0003, 011	12	-	wa300, 011	21			

Top 5 Highest Risk Counties for Select Hazard Types in Region 10

Federal Emergency Management Agency

61

Top 5 Highest Risk Counties for Select Hazard Types in Region 10

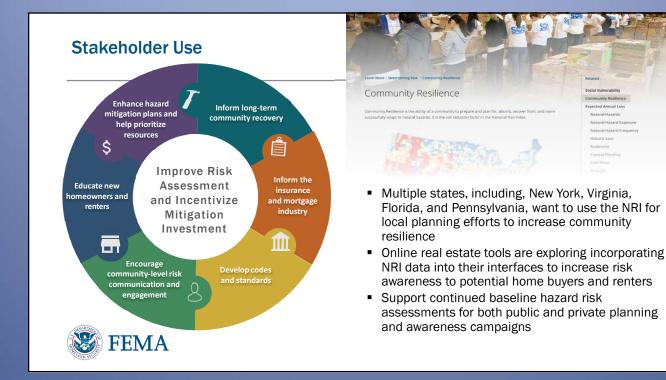
	LANDSLIDE		LIGHTNING				RIVERINE FLOOD	ING	STRONG WIND					
#	County	Score	#	County	Score	#	County	Score	#	County	Score			
1	Wheeler, OR	100	1	Canyon, ID	23	1	Curry, OR	24	1	Yakima, WA	16			
2	Curry, OR	91	2	Yakima, WA	16	2	Yukon-Koyukuk, AK	23	2	Jackson, OR	14			
3	Douglas, OR	73	3	Ada, ID	15	3	Douglas, OR	23	3	Umatilla, OR	14			
4	Coos, OR	69	4	Chelan, WA	15	4	Coos, OR	22	4	Minidoka, ID	12			
5	Tillamook, OR	69	5	Jackson, OR	15	5	Tillamook, OR	21	5	Bannock, ID	11			
	TORNADO			TSUNAMI			VOLCANO			WILDFIRE				
#	County	Score	#	County	Score	#	County	Score	#	County	Score			
1	Multnomah, OR	17	1	Coos, OR	56	1	Pierce, WA	100	1	Okanogan, WA	34			
2	Marion, OR	15	2	Curry, OR	53	2	King, WA	95	2	Chelan, WA	33			
3	King, WA	13	3	Grays Harbor, WA	46	3	Yakima, WA	95	3	Yakima, WA	32			
4	Washington, OR	13	4	Clatsop, OR	46	4	Clark, WA	89	4	Wasco, OR	30			
	Spokane, WA	12	5	Lincoln, OR	44	5	Lewis, WA	85	5	Valley, ID	30			

Federal Emergency Management Agency

Top 5 Highest Risk Counties for Select Hazard Types in Region 10

WINTER WEATHER

#	County	Score
1	Nome, AK	41
2	Kusilvak, AK	40
3	Bethel, AK	37
4	Northwest Arctic, AK	31
5	Marion, OR	25


FEMA

Federal Emergency Management Agency

63

National Risk Index Placemat

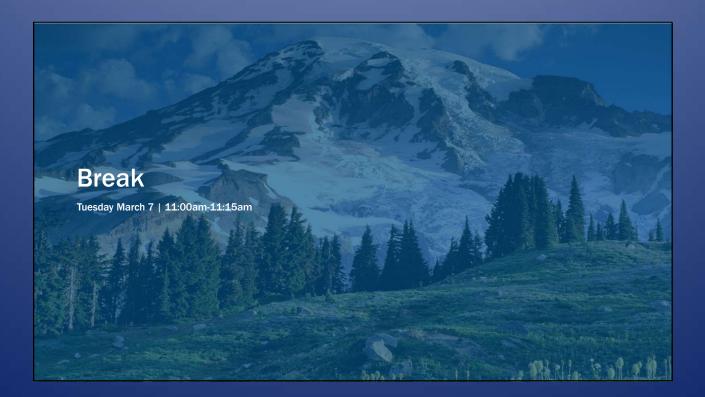
				Co	nseque									B	Bayesia	Leve	els
Hazard Type	Data Source	Period of Record	Hazard Occurrence Basis		Types	71	Exposure Area	Method for Exposure Value Estimation	Data Source	Period of Record	Event Duration Cap	Loss Aggregation	Zero-Loss Padding	County	Area	Region	100
Avalanche	ASU	1960-2019	Event				Representative Exposure	Default population & building exposure	ASU	1995-2019		Timeframe		*			
Coastal Flooding	*	Annualized probability	Event				Susceptible Area: Developed area in the unioned sub-type layers	Developed area density	ASU	1996-2019		Consecutive day		~	1	1	
Cold Wave	۲	2005-2017	Event day			4	Widespread: Average hazard occurrence size	Developed area & agriculture value densities	3	1995-2019	31 days	Single day	~	~	1	4	
Drought	0	2000-2017	Event day			1	Widespread: Average agricultural area hazard occurrence size	Agriculture value density	ASU	1996-2019	365 days	Single day	~	1	*	4	
Earthquake	EUSGS FEMA	Annualized probability	Event	¥	1		Expected annual loss & exposure Hazus [®] Estimated Annualized Ea		ASU	1960-2019		Timeframe		1	1		
Hail	8	1986-2017	Event				Widespread: County/Census Tract	Total value	ASU	1996-2019		Single day	1	1	1	1	
Heat Wave	۲	2005-2017	Event day				Widespread: Average hazard occurrence size	Developed area & agriculture value densities	ASU	1996-2019	31 days	Single day	~	1	1	1	
Hurricane	2	ATL: 1851-2017 PAC: 1949-2017				÷	Widespread: Average hazard occurrence size	Developed area & agriculture value densities	ASU	1996-2019		Consecutive day	~	*	1	1	
Ice Storm	-		Event day	4			Widespread: Average hazard occurrence size	Developed area density	ASU	1996-2019	31 days	Single day	1	1	~	1	
Landslide		2010-2019	Event				Susceptible Area: Landslide susceptible area	Developed area density		1995-2019				~			
Lightning	3	1991-2012	Event				Widespread: County/Census Tract	Total value	ASU	1995-2019		Single day		~	~		
Riverine Flooding	2	1996-2019	Event day	4			Susceptible Area: Land use area within 100-yr floodplain area	Developed area & agriculture value densities	ASU	1996-2019	31 days	Single day	¥	4		1	
Strong Wind	۲	1986-2017	Event				Widespread: County/Census Tract	Total value	ASU	1996-2019		Single day	1	1	1	1	
Tornado	3	1986-2019	Event			4	Representative Exposure: Average historical damage size by sub-type		ASU	1996-2019			1	~	1	1	
Tsunami	1	1800-2018	Event				Susceptible Area: Developed area within inundation zone area	Developed area density	ASU	1995-2019		Consecutive day	1	1	1	4	
Volcanic Activity	2	9310 BCE-2018	Event				Susceptible Area: 100-km buffer around active volcano locations	Developed area density	ASU	1960-2019		Timeframe		1	~		
Wildfire	-	Annualized probability	Event				Susceptible Area: Areas where modeled flame length > 8'	Average density	ASU	1996-2019		Timeframe		~	~		
Winter Weather	8	2005-2017	Event day			4	Widespread: Average hazard occurrence size	Developed area & agriculture value densities	ASU	1996-2019	31 days	Single day	1	1	1	1	

Next Steps for the NRI

Email FEMA-NRI@fema.dhs.gov for more information

- U.S. Territory Expansion Include EAL for as many hazards as possible for PR, VI, AS, GU, and MP
- Census 2020 Update Update all baseline data, geographies, and Census assumptions throughout the application
- Social Vulnerability Metric Review Stand-up working group to provide direction on Social Vulnerability metric
- Coastal Flooding Data Update Work with NOAA on updating Coastal Flood Hazard with Sea Level Rise Report data
- Hazard Data Update Review and prioritize hazard data updates for Frequency and Exposure
- Alternative Risk Metrics and State NRI Scores Develop and make available EAL Rate and State NRI scores
- INRI Data Version Archive Make all historic versions of NRI data and documentation available via Data Archive

Climate Change/Future Conditions - Identify path and prototype solution


GIS Version Control – Produce an evergreen GIS service for users to prevent data version disconnects

Vpdate Completed and Implemented

Federal Emergency Management Agency

