

Climate change vulnerability is about more than just impacts: To plan for climate change, we also need to know when consequences are important, and what is our capacity to adapt.

Vulnerability is not just about Impacts

Three factors:

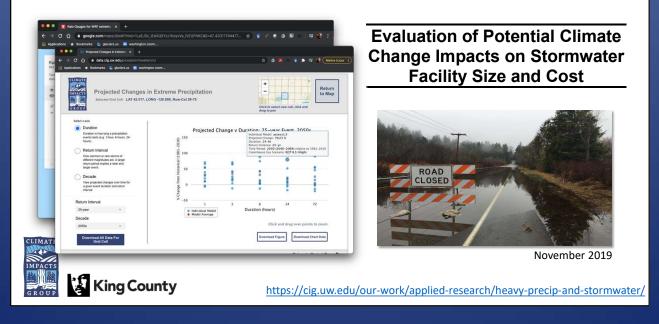
https://www.washingto

https://www.washington

- 1. How much change?
- 2. When does it matter?
- 3. What is our capacity to adapt?

Vulnerability is not just about Impacts *Three factors:*1. Exposure 2. Sensitivity 3. Adaptive Capacity

There is more than one way to prepare for climate change: Start simple, then add complexity as you need it.


Anacortes Water Treatment Plant

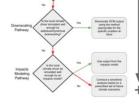
Start with what you want to know:

By defining the problem, you can better hone in on the information you need.

Impact on Stormwater Design

There are lots of resources available to help you both assess impacts and plan for climate change.

New Data Guide: "Quantifying Sensitivity + Exposure"


Climate Adaptation for Floodplain Manager

1. How do I au

https://cig.uw.edu/projects/supporting-climate-resilient-floodplain-management-in-whatcom-and-snohomish-counties/

Exposure?

2. How do I quantify

4. Where can I find the latest data?

5. What do I need to consider when seeking new data on sensitivity sure?

ing data for q

5

Resources for assessing impacts:

Climate Toolbox https://climatetoolbox.org/

And the second of the second o

Water Resources Dashboard https://toolkit.climate.gov/topics/water/water-resources-dashboard

Climate Impacts Group https://cig.uw.edu/resources/analysis-tools/

Use sensitivity testing to explore impacts:

"What happens if" scenarios are a valuable way to explore vulnerabilities.

325%

246%

175%

116%

59%

14%

30%

345%

265%

193%

128%

71%

23%

40%

362%

286%

198%

137%

90%

34%

50%

Use sensitivity testing to explore impacts Scenario 10-10 Basement Backup Risk Increase 50% 272% 292% 300%

Intensity Increases

40%

30%

20%

10%

0%

198%

133%

79%

37%

0%

0%

216%

151%

91%

43%

0%

10%

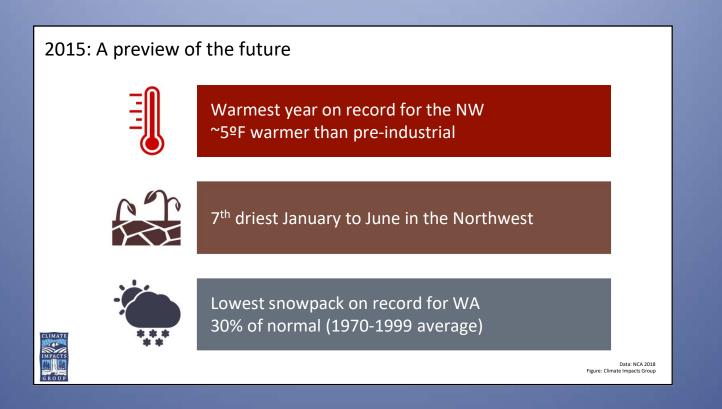
231%

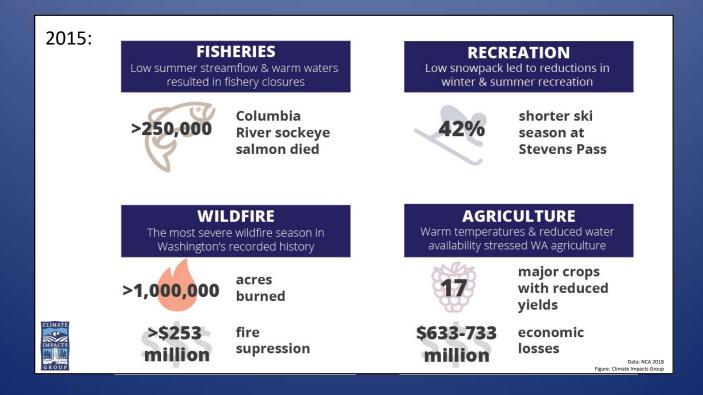
162%

100%

49%

7%


20%


Volume Increases

NVIRONMENTAL SERVICE

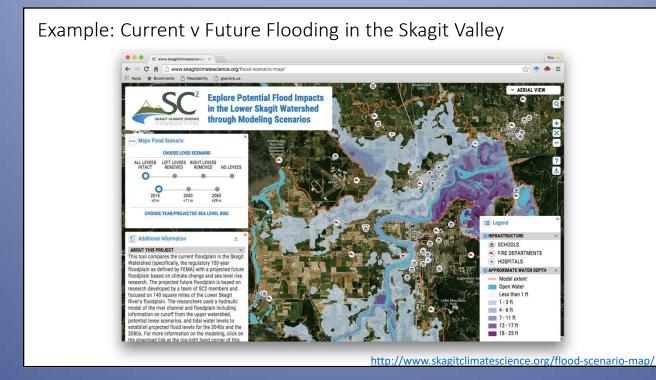
Learn from events as they happen: These are "dress rehearsals" for the future, and probably the best way to understand what works / doesn't.

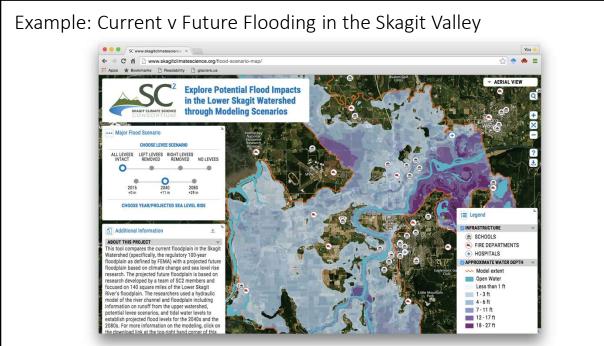


Leverage existing science to benefit from economies of scale: Impacts studies can often be conducted over large areas, or at least build on past experience.

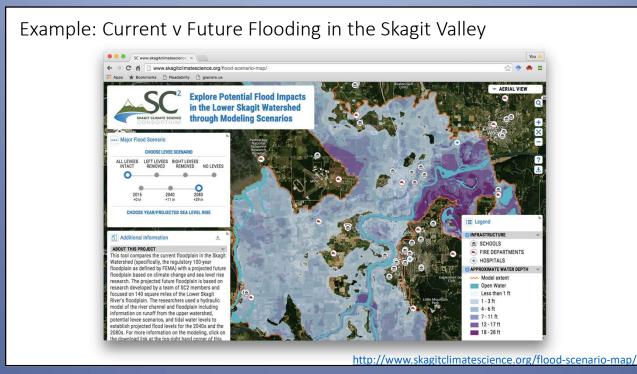
Recent Fine-Scale Hydrologic Model Projections

15 West Sound watersheds Statistical Downscaling PNPTC, 2019




Nooksack, Stillaguamish Dynamical Downscaling WWU, 2022

Skagit Statistical Downscaling UW CEE, 2018


Snohomish, Cedar, Green, Puyallup Dynamical Downscaling UW CIG, in progress

(this list is likely incomplete)

http://www.skagitclimatescience.org/flood-scenario-map/

Research priorities should directly address management needs: This is best done by codeveloping an agenda with stakeholders and researchers.

11

Example: Climate study priorities in Pierce County

Example: Climate study priorities in Pierce County

Climate Change and Puyallup River Floodplains: Brief Scopes of Possible Future Work

Guillaume Mauger

-

Purpose of this Document

Previous work by the UW Olimate Impacts Group (CIG), on behalf of the Roodplains for the Future (FRF) partnership, developed a four-part set of briefs on dimate change impacts and adaptation, including an assessment of the gaps in currently matables existence. This document summarizes additional work that could help to inform dimate-resilient planning, project selection, and project design by the Roodplains for the Future (FRF) team. Below are a series of brief project descriptions, with Intended project outcomes, qualifications needed, and a rough estimate of the level of forth required.

Why Does this Matter?

Climate change has the potential to dramatically after flood risk, hydrology, and other factors affecting hydralup river floodplans. Exiting dudies projed a dealler of as much as 55% is period some as a 20% increase in heavy rain intensity, by the 2080s. Absent Mud Mountain Dam, the 100-year flow could more than double by the end of the cartury. Initial calculations, described below, suggest these changes will exceed the dam's capacity to hold back flood waters.

At the same time, climate change is far from being the only factor affecting floodplain management decisions in the Ruyalup basin. Other factors include development and an ongoing accumulation of risk in floodplains, increasing proportions of impervious surfaces, and a lack of channel complexity (due to channel straightening, removal of logiams, etc.). Depending on the location and impacts, climate change will be more important than other factors in some instances and uses important in others. Where climate change impacts are important, it can be detrimental to ignore them – potentially rendering some actions counterproductive while others would simply be ineffective.

Example: Climate study priorities in Pierce County

Table 1. Summary of proposed studies and the utility of each for climate-resilient FRF work. Priority studies are highlighted in bold.

Climate Change and Puyallup River Floodplains:

Brief Scopes of Possible Future Work

Guillaume Mauger

Purpose of this Document

Previous work by the UW Glimate Impacts Group (CIG), on behalf of partnership, developed a four-part set of briefs on dimate change in assessment of the gaps in currently available science. This document could help to inform dimate-netilient planning, project selection, an for the future (FP) team. Balow are a series of brief project descrip outcomes, qualifications needed, and a rough estimate of the level of the level of the future (FP) team. Balow are assessing to the fore of the level of the selection.

Why Does this Matter?

Olimate change has the potential to dramatically after flood risk, hyd Ryadiup river floodplains. Existing studies project a decline of as mu a 20% increase in heavy rain intensity, by the 2080s. Absent Mu dMu could more than double by the end of the century. Initial calculation changes will exceed the dam's capacity to hold back flood waters. At the same time, dimate change is far from being the only factor af decisions in the Puyaliup basin. Other factors indude development *c* in floodplains, increasing proportions of impervious surfaces, and a in channel straightening, removal of logiams, etc.). Depending on the is change will be more important than other factors in some instances Where climate change impacts are important, it can be detrime rendering some actions counterproductive while others would is

	5	atudy would info	form:	
Proposed Study	Scale	Prioritization	Design	
Impacts Table (whole watershed)		\checkmark		
Impacts Table (specific reach)		\checkmark		
White R Sensitivity Analysis	\checkmark	\checkmark		
Projected Changes in Streamflow	\checkmark	\checkmark	\checkmark	
Future Flood Depth & Extent (whole watershed)	\checkmark	\checkmark		
Future Flood Depth & Extent (specific reach)	\checkmark		\checkmark	
Groundwater Depth & Salinity	\checkmark	\checkmark	\checkmark	
Sediment	\checkmark	\checkmark	\checkmark	
Saltwater Wedge	\checkmark		\checkmark	
Retrospective Impacts Analysis	\checkmark	\checkmark		
Will Our Plans Measure Up?		\checkmark		
Vulnerabilities and Adaptive Capacity		\checkmark		
Guidelines: Climate-Resilient Planning & Design		\checkmark	\checkmark	
Stream Temperature	\checkmark	\checkmark		

Example: Climate study priorities in Pierce County

 Table 1. Summary of proposed studies and the utility of each for dimate-resilient FRF work.

 Priority studies are highlighted in bold.

Climate Change and Puyallup River Floodplains:

Brief Scopes of Possible Future Work

Guillaume Mauger

Purpose of this Document

Perious work by the UW Olimate Impacts Group (OIG), on behalf of partnership, developed a four-part set of briefs on dimate change in assessment of the gaps in currently available science. This document could help to inform climate-resilient planning, project selection, an for the Future (FR) team. Below are a series of brief project descript outcomes, qualifications needed, and a rough estimate of the level c

Why Does this Matter?

Omate change has the potential to dramatically after flood risk, hyp Paylatip vire floodplans. Existing studies project a design of as mu a 20% increase in heavy rain intensity, by the 2080s. Absent Mud Mc could more than double by the end of the century, initial calculation danges will exceed the dans a galacity to hold back flood waters. At the same time, climate dange is far from being the only factor at decisions in the Paylalup basin. Other factors include development i in floodplaims, increasing proportions of impervious surfaces, and a channel straightening, removal of logisms, etc.). Depending on the is during will be one important than toor factors in one instances. Where climate change impacts are important, it can be detrime rendering some actions counterproductive while others would d

	Proposed S	Study Scale Prioritization Desig	an				
Impacts Tab	Topic	Project Name	Lead	PM	Approx. Budget	Approx. Timeline	Outcor
Impacts	Do Our Plans		NSD	PCD?	\$30,000	06/2020-11/2020	Flood and sedime potential setback development. To flood volume & a
White	Measure Up?	FFtF: Puyallup Watershed Retoration and Flood Benefits					
Projected Cha	Salt Wedge	Clear Creek Salinity Intrusion Study	UW CEE	UW CEE	\$30,500	10/2020-06/2021	How often salt w and in the future
Future Flood Depth & Extent	Streamflow	Impacts of Climate Charge on Peak Flows in the Puyallup River basin	PNNL	UW CIG (Guillaume)	\$36,000-\$48,000	10/2020-06/2021	Future streamflo Focus is peak flo times/seasons (o
Future Flood Depth & Ext Groundwat	Flooding	Flood Inundation Mapping	Todd, SWM	Brynne? Guillaume?	777	777	Future flood dep conditions, if all implemented, an protections remo
	Sediment	Phase 1 – Document the scale and extent of recent aggradation	USGS	SPSSEG	\$35,000	6 months for results, 3-6 more for report. can't start until 10/2020	Updated aggrads lower basin. Use trends from tran
	Sediment	Phase 2 – Improve understanding of underlying causes of observed aggradation	USGS	SPSSEG	\$80,000	~18 months, depending on scope	Causes of aggrad management op of aggradation.
Retrospecti Will Our	Sediment Monitoring	Monitoring: Suspended + Bedload sampling	USGS	PC SWM?	Suspended: \$20-22k/yr Bedioad: \$12-24k/yr (cost per site)	n/a	Long-term monif better information the sources of the accurate sedime
Vulnerabilities and Guidelines: Climate-Resilier	Sediment Monitoring	Multi-beam survey of lower river	TBD	PC SWM (Dennis Dixon)	\$5,000-10,000	TBD	Lidar surveys do lower river, whe between levees. important to mo of flooding in the
	ream rempor	aturo y y					

Study would inform:

Climate change is better addressed through prioritization than project design: Both are important, but with limited resources we need to be judicious.

Example: Effectiveness studies

<section-header>

https://www.seattletimes.com/opinion/ weather-disasters-can-teach-us-how-toprepare-for-the-future/